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ABSTRACT
Background and Objective: In contrast with the laboratory environment, it is challenging to quickly and
accurately  rate  disease  severity  in  real  farming  conditions  for  high-density  crops  like  blueberries.
In field-taken images, the target diseased organs are usually shaded, interfered, occluded and
backgrounded by other plants or plant parts, which are often irrelevant to severity estimation. This study
aimed to develop and validate a computer vision-based severity estimation algorithm for mummy berry
disease, which enables labor-free severity estimation with high accuracy and applicability in real farming
conditions. Materials and Methods: This study developed a fast and accurate severity estimation
algorithm for wild blueberry diseases by utilizing computer vision-based techniques. Firstly, this study
employed a novel deblurring process using defocus estimation to effectively remove blurred parts so that
the diseased and healthy target organs can be separated from the irrelevant background. This method
was also enhanced by using adjustable parameter settings so that low-quality images such as those
without clear focus could be properly handled. Secondly, by converting RGB features into HSV space
followed by bootstrap forest modeling, diseased organs can be automatically segmented and then the
severity can be estimated by calculating the ratio of total diseased pixels to the total pixels excluding
background. Results: This step can effectively alleviate the negative impact of light variations such as
shading on diseased organs. Verifications and experiments conducted on 400 disease images
demonstrated that this approach can effectively identify diseased and healthy plant organs and make an
accurate estimation with less than an average 5% relative error across different levels of background
complexity and image quality. Conclusion: The method can serve as an auto-labeling tool to automatically
rate the disease severity for field-taken images, on which severity estimation deep learning models can
be trained without the limitation of data scarcity.
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INTRODUCTION
Wild lowbush blueberry (Vaccinium angustifolium Aiton) is a species of blueberry native to Northeastern
North America1, where approximately 100 million kg of wild blueberries are produced annually2. Due to
the high economic value of blueberries and the increasing threat of diseases, issues related to blueberry
diseases need to be addressed. Common blueberry diseases are numerous, with the most significant being
mummy berry disease3. This disease can occur at different stages of blueberry growth, posing a significant
threat to the yield and quality of blueberries4,5. The application of computer vision methods for automated
assessment of the severity of blueberry diseases can help understand disease spread, estimate threat
levels and thus provide information for developing targeted prevention and control strategies.

The severity of plant diseases, defined as the proportion of plant organs (e.g., leaves) with evident disease
symptoms to the total plant organs, is a critical quantitative metric for many diseases6. It serves as the
basis for deciding the type and quantity of treatments when undertaking disease prevention and control
measures7. Timely and accurate detection of the severity of plant diseases is particularly important for
farmers, as it helps them make effective decisions to protect crops from secondary infection and reduce
economic losses. Traditional methods for assessing crop disease severity typically encompass two
approaches: Expert scoring and automated assessment8. Expert scoring involves specialists evaluating the
extent of crop disease based on a predefined assessment indicator system9. Automated assessment
primarily relies on hyperspectral remote sensing technology10. In recent years, there have also been
methods based on image processing and deep learning for disease severity assessment11,12. Image
processing often involves rating the proportion of the diseased area to the healthy area to estimate
severity. Deep learning methods mostly treat disease grading as a classification task, training models with
input data that include different levels of disease severity13.

Regardless  of  many  computer  vision-based  approaches  taken  to  assess  the  disease  severity  of
high-density crops like wild blueberries, two problems arise. The first problem is how to eliminate
interferences from irrelevant objects and accurately delineate the affected and healthy regions from
images? A blueberry plant image captured in real-farming conditions typically comprises three categories
of objects: One being the infected organs, the second being the healthy organs and the third being other
parts unrelated to severity assessment. The irrelevant parts include unrelated backgrounds like the sky and
trees, as well as other blueberry plants with backgrounds resembling disease symptoms. In this scenario,
the overlap and obstruction of these unrelated elements are the primary factors affecting interference
recognition and computation, making it crucial to effectively remove them during the identification
process.

Another problem is how to deal with the color variation in disease visual characteristics caused by
uncontrollable natural light conditions, enabling accurate identification. Diseases typically exhibit distinct
color characteristics compared to healthy portions, thus leveraging this trait for extraction of the infected
parts is feasible. However, the visual characteristics of diseased areas in the image are highly sensitive to
changes in brightness, which, unlike controlled laboratory conditions, are inevitable in field conditions. For
the same ailment, significant color differences will be reflected under different lighting conditions. This
poses significant difficulties for machine vision-based disease extraction methods. Hence, an appropriate
disease feature extraction method holds paramount importance for the accurate estimation of disease
severity.

The first problem can be solved by removing irrelevant content from the image before extracting the
diseased organs. In general, images taken for disease severity estimation purposes, have their focus on
the diseased organs surrounded by healthy parts of the stem in the blueberry plant. Other areas, apart
from these, are usually irrelevant and relatively blurred, which can be removed so that the infection
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severity can be accurately estimated. Defocus estimation plays a significant role in various computer vision
and computer graphics applications, including depth estimation, image quality assessment, image
deblurring and refocusing14. Its purpose is to estimate the depth of field information for foreground and
background objects from the image15.

Utilizing defocus estimation allows differentiation between the blurred and non-blurred portions of the
image, which benefits the removal of interfering factors and leads to a more accurate estimation16.
However, the defocus estimation process comes with numerous challenges17, such as depth information
loss, blur and distortion, lighting variations, multiscale issues, noise interference and motion blur, making
it difficult to perform defocus estimation on images captured in outdoor settings18. One typical example
is that the degree of blur might be uneven across all the images taken for severity estimation considering
the effects of different shooting habits and constraints in the field19. Therefore, how various degrees of
blur can be properly handled to generalize its applicability in real-farming conditions is critical.

Aside from the removal of blurred interference, a lot of research efforts have been devoted to the work
of extracting diseased regions. Infected blueberries were physically observed by experts and researchers,
a process that was both labor-intensive and costly20. With the increasing application of deep learning
methods in agriculture, disease identification in crops not only saves labor in feature engineering but also
achieves high accuracy in many real field conditions. While deep learning can retrain efficient and accurate
models based on extensive data collection, this process demands significant time and effort for accurate
data labeling, i.e., the fidelity to rating the degree or severity21. Therefore, attention has gradually shifted
back to conventional computer vision methods to avoid extensive manual labeling. Many histogram
equalization-based methods have been reported by researchers22-24 in which the diseased parts of the
plant can be segmented by means of image processing using feature extraction and classification
techniques such as self-organizing feature maps, back-propagation algorithms, SVMs. These solutions
work  well  for  images  taken  in  a  controlled  lab  environment  but  are  sensitive  to  light  variations
in real-farming conditions25. Therefore, how light variations in real field conditions can be sufficiently
suppressed to minimize their effects on severity estimation is crucial.

This study aimed to develop and validate a computer vision-based severity estimation algorithm for
mummy berry disease, which enables labor-free severity estimation with high accuracy and applicability
in real farming conditions. The study proposed a novel deblurring technique using defocus estimation
based on the Gaussian gradient ratio to remove blurred areas that are irrelevant to severity estimation,
so that accuracy can be promoted by rating relevant only elements and robustness to various degrees of
blurriness can be achieved by using dynamic parameterization. Then proposed a bootstrap forest method
to learn the segmentation parameters in HSV color space so that the effects of light variation on disease
feature extraction can be minimized. This approach not only provides an effective and accurate severity
estimation module for field surveillance AI systems, but also can serve as an auto-labeling tool for
automatic rating of disease severity for field-taken images, on which severity estimation deep learning
models can be trained without the limitation of data scarcity.

MATERIALS AND METHODS
Data collection
Sampling location and method: The study was carried out from May, 2023 to December, 2023. Sample
images of diseased wild blueberry plants were taken at the experimental stations of the University of
Maine Blueberry Hill Farm (BBHF) in Jonesboro, Maine, USA (Latitude: 67°38'53"W, Longitude: 44°38'44"N).
Photographs were taken from multiple angles using a digital camera with a resolution of (1280 to 3480)
x1080p. The shooting distance was fixed at 1 meter and images were required to focus on diseased lesions
on leaves or flowers of a blueberry plant (Fig. 1a-b).
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Fig. 1(a-b): Example field images focused on diseased blueberry (a) Leaves and (b) Flowers

Fig. 2(a-d): Sample images of mummy berry disease on (a-b) Flowers and (c-d) Leaves
Light (a, c) and severe (b, d) symptoms are visually marked by a blue contour line

Dataset  description:  The  image  dataset  primarily  comprises  various  affected  parts  of  blueberry
plants with mummy berry disease. Mummy berry disease is caused by the fungal pathogen Monilinia
vaccinii-corymbosi26 and is one of the major diseases of blueberries. The disease causes irregular dark
brown spots and grayish-white mold on parts of blueberry flowers, leaves, fruits and stems (Fig. 2a-b).
Symptoms usually appear early in the season with a general brown coloration around the major leaf
veins27. As the disease progresses, leaves, new shoots, buds and flowers may wilt, turn brown and drop
(Fig. 2c-d). To establish the sample image dataset, over 400 images were captured specifically focusing
on blueberry plants affected by mummy berry disease.

Typical images taken for blueberry disease severity evaluation have two main features that affect
estimation, i.e., (1) Effects of background and light conditions and (2) Image quality. As a density crop,
many elements in the images are irrelevant to the severity estimation of the target plant and need to be
removed: (1) Background area including sky, trees, etc. (Fig. 3a); (2) Other blueberry plants that can not
be counted for rating the target plant (Fig. 3b) and (3) Backgrounds with similar characteristics resembling
the disease (soil, fallen leaves and etc. Fig. 3c). The three components in the example image (Fig. 3a-c) are
shown respectively in figures (Fig. 3d-f). In field rating scenarios, natural light is not controllable and
subject to change. Even with the same symptom on the same plant, light variations can significantly
change the visual traits of the diseased lesions (Fig. 4a-c), which is a major barrier to feature extraction
by computer vision techniques. In reviewing the field-collected images, a small portion of them shows
various  degrees  of  blurriness,  as  shown  in  Fig.  5a-c  where  three  typical  levels  of  blurriness
(accurately focused, slightly out-of-focus and severely out-of-focus images) were presented. This
phenomenon is common due to varying shooting distances and instabilities during focusing28.
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Fig. 3(a-f): Elements  within  the  field  taken  images  irrelevant  to  severity  estimation,  (a)  Background
(e.g., sky, trees), (b) Other blueberry plants, (c) Background resembling disease symptoms and
(d-f) Close-ups of irrelevant parts and the diseased area in a-c

Fig. 4(a-c): Visual traits of the same symptom of mummy berry disease affected by different lighting
conditions, (a) Sufficient light, (b) Partially shaded and (c) Severely shaded

Fig. 5(a-c): Typical  blurriness  variations  in  field-collected  images,   (a)   Accurately   focused   image
(high  quality),   (b)   Slightly  out-of-focus  images  and  (c)  Severely  out-of-focus  images
(low quality)
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Fig. 6: Overview of the proposed image process and disease severity estimation approach with an
example. Steps, methods and examples are provided

Severity estimation
Method overview: The proposed approach takes a field-sampled image focusing on disease as an input,
then a deblurring process is applied to remove irrelevant elements in the image. The deburring process
includes three steps, which are (1) Blur edge identification, (2) Defocusing blur and (3) Defocusing map
interpolation. This process can effectively suppress interferences from the background and other graphical
elements irrelevant to disease evaluation. Then, a bootstrap forest model is applied to extract the diseased
part from the healthy part after the irrelevant elements are removed. This step requires feature
representation of diseased and healthy parts in color space, from which a decision boundary and its
parameters can be learned to accurately separate the diseased part from the healthy background. This
process is done on the whole dataset to gain a statistically robust parameter estimation for the decision
boundary. Once the disease extraction is done, the number of pixels of the diseased part and the healthy
part can be counted, respectively. Finally, the ratio of the disease pixels to the total area except for the
irrelevant elements is calculated as the estimation of disease severity. The whole process is illustrated in
Fig. 6 and further clarified using an example.

Removal of irrelevant elements: Statistical evidence (unpublished data and the dataset established in
this study) showed that images taken for disease severity estimation share the common feature that the
diseased organs and their healthy counterparts are usually focused while other parts are relatively blurry.
Therefore, removing the blurry parts, i.e., the process of deblurring, can eliminate the interference from
irrelevant elements in the image in severity estimation. The process of deblurring consists of three main
steps: (1) Establishing the defocus model, (2) Defocus blur estimation and (3) Defocus map interpolation.

Defocus modeling (f): This study calculates the defocus blur at the edges, focusing specifically on edge
locations. Given that the step edge is the predominant edge type in natural images, our study exclusively
addresses step edges. An ideal representation of a step edge can be conceptualized as29:

f(x) = Au(x)+B (1)

The step function is denoted by u(x), where, A and B represent the amplitude and offset of the edge,
respectively. It is important to note that the edge is positioned at x = 0.
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Fig. 7(a-b): Concepts of focus and defocus within thin lens model, (a) Focus and defocus for thin lens
model and (b) Diameter of CoC c as a function of the object distance d and f-stop number N
given df = 500 mm and df = 80 mm

Assuming adherence to the thin lens model, focus and defocus follow certain principles. Specifically, when
an object is positioned at the focal distance df, the rays emanating from a particular point on the object
converge onto a single sensor point, rendering the image sharp. Conversely, rays from a point on another
object located at distance d will reach multiple sensor points, leading to an image characterized by
blurriness. The nature of the blur is contingent on the shape of the apture and is termed the circle of
confusion (CoC). The diameter of the CoC serves as a descriptor for the degree of defocus and can be
expressed as30:

(2)
2

f 0

f 0

d- d fc= d N(d - f )

In  the  given  context,  f0  denotes the focal length, while N represents the stop number of the camera.
Figure 7a-b visually depicts the concepts of focus and defocus within the thin lens model, specifically
highlighting the variation in the diameter of the circle of confusion concerning both the object distance
(d) and the stop number (N). This illustration assumes fixed values for the focal length (f0) and focal
distances (df). It is apparent from the diagram that the diameter of the circle of confusion (CoC), denoted
as c, follows a non-linear, monotonically increasing pattern in relation to the object distance d.

The representation of defocus blur involves modeling it as the convolution between a sharp image and
the point spread function (PSF). The PSF is commonly approximated using a Gaussian function, denoted
as g(x,σ), where the standard deviation σ = kc serves as a measure of the defocus blur extent, directly
proportional to the diameter of the circle of confusion (CoC) c. The resulting formula for a blurred edge
i(x) is then derived as31:

i(x) = f(x)qg(x, σ) (3)
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Fig. 8: Overview of blur estimation approach
Here q and L are the convolution and gradient operators, respectively. The black dash line denotes the edge location

Defocus blur estimation: For blur estimation, an edge undergoes re-blurring with a predetermined
Gaussian kernel initially (Fig. 8). Subsequently, the ratio between the gradient magnitude of the original
step edge and its re-blurred counterpart is computed. This ratio is determined as the maximum value at
the edge location. By utilizing this maximum value, the extent of defocus blur determined at the specific
edge location.

To enhance clarity, blur estimation method was presented initially for the 1D case and subsequently
extended it to the 2D image scenario. The gradient of the re-blurred edge is then expressed as32:

(4)
   

     

 
 
 
 

1 0 0

2

2 22 2 00

i (x)= (i(x) g(x,σ ))= ((Au(x)+B) g(x,σ) g(x,σ ))
A x= exp - 2 σ +σ2π σ +σ

where, represents the standard deviation of the re-blur Gaussian kernel, also known as the re-blur scale.
The ratio of gradient magnitudes between the original and re-blurred edges was then expressed as32:

(5)
2 2 2 2

0
2 2 2 2

01

i(x) σ +σ x x= exp - -σ 2σ 2(σ +σ )i (x)
   
       

A proof demonstrates that the ratio attains its maximum at the edge location (x=0) and the maximum
value is determined by Canny33:

(6)
2 2

0
2

1

i(0)R i (0)
   

 


Based on the analysis presented in Eq. 4 and 6, it becomes evident that the edge gradient is contingent
on both the edge amplitude A and the blur amount s. However, when considering the maximum of the
gradient magnitude ratio R, the influence of the edge amplitude A is nullified and the dependency is solely
on and . Therefore, leveraging the maximum value of R at the edge locations, we can calculate the
unknown blur amount s using33:

(7)02

1
R 1

  


In the case of 2D images, the process of blur estimation is analogous. Re-blurring is achieved using a 2D
isotropic Gaussian kernel and the computation of gradient magnitude unfolds as follows33:

(8)2 2
x yi(x, y) i i   

https://doi.org/10.17311/tas.2024.157.179  |                 Page 164

Blurred edge                   Re-blurred edges                    Gradients                         Gradient ratio 

Blur 
amount 

q1 L

Li 
Li1



Trends Agric. Sci., 3 (2): 157-179, 2024

The notation Lix and Liy denotes gradients along the x and y directions, respectively.  This  approach  fix
σ0 = 1 for re-blurring and utilize the Canny edge detector for edge identification. Another assumption is
a linear camera response curve.

The estimation of blur scales takes place at each edge location, resulting in a sparse depth map
represented by d̂(x).

Defocus map interpolation: With the obtained sparse defocus map, denoted as  in the previous step,d̂(x)
this approach involves extending defocus blur estimates from edge locations to the entire image, which
resulted in a comprehensive depth map  This entails determining a defocus map, denoted as d(x), thatd̂(x).
closely approximates the sparse defocus map d(x) at each edge location. Additionally, the study aims to
align defocus blur discontinuities with image edges. For these tasks, edge-aware interpolation methods
are commonly employed34,35. This case specifically utilize the matting Laplacian36 for defocus map
interpolation. Formally, the depth interpolation problem is cast as the minimization of the following cost
function30:

(9)   TT ˆ ˆE(d) d LD d d D d d    

In this context,  and d denote the vector representations of the sparse defocus map  and thed̂ d̂(x)
complete defocus map d(x), respectively. The matrix L represents the matting Laplacian, while D is a
diagonal matrix with Dii equaling 1 if pixel i is at an edge location and 0 otherwise. The scalar l serves as
a balance parameter, determining the trade-off between fidelity to the sparse depth map and the
smoothness of interpolation. The (i, j) element of L is formally defined as30:

(10)   
k

1
T

ij i k k j k
k (i, j) k k

1 1 I U I





                       


The expression involves the Kronecker delta, denoted as δij, where Uξ is a 3*3 identity matrix. The µk and
σk represent the mean and covariance matrix of colors within the window ωk. The Ii and Ij refer to the
colors of the input image I at pixels i and j, respectively. The parameter ε serves as a regularization factor
and |ωk| denotes the size of the window ωk. For a more in-depth derivation of Eq. 10, readers are directed
to36.

The optimal solution for d can be obtained by solving the following sparse linear system30:

(11)ˆ(L D)d Dd   

The default setting for λ is 0.005 to impose a soft constraint on d, aiming to enhance the accuracy of blur
estimation by refining minor errors. This soft matting approach has also been employed in previous
studies37-38 to address challenges related to dehazing and spatially variant white balance issues.

Sensitivity of parameter λ: As previously reported by Zhuo and Sim39, the default setting of parameter
λ works well for sharp images but might not be suitable for images suffering various degrees of blurriness.
This phenomenon is common due to varying shooting distances and instabilities during focusing but
might negatively affect the deblur process and consequently cause incorrect segmentation of diseased
parts. Field-collected image dataset also showed that a small portion of them had various degrees of
blurriness (Fig. 5). Therefore the study investigated how this parameter is related to blur estimation and
tried to find the appropriate setting of λ to cope with this uncertainty in field-collected images.
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Distinguishing disease from the healthy part
Feature representation in color space: In the RGB color model, the color of each pixel in a color image
is expressed as a triplet (R, G, B), each component of which is extracted as a value between 0 and 255. In
order to alleviate the effects of light changes in real farming conditions on identification results, here will
also discuss another type of color space, namely the HSV color space. The HSV color space is a way of
mapping the RGB color space into a three-dimensional inverted cone. It describes color attributes through
three parameters: Hue (H), Saturation (S) and Value (V). The Hue (H) is identified by an angle from 0-360°,
where red is at 0°, green is at 120° and blue is at 240°. Saturation (S) represents the purity or intensity of
color. The higher the saturation, the more pure and intense the color; conversely, when the saturation is
lower, the color tends towards gray or white, that is, more white components are mixed in. The Value (V)
is used to measure the brightness of the color. The process of converting from the RGB color space to the
HSV color space is shown in the following equations:

(12)
2

1(2R G B)2H Arcos
(R G) (R B)(G B)

 


   

(13)Max(R,G,B) Min(R,G,B)S max(R,G,B)




V = Max (R, G, B) (14)

Therefore, the feature of each pixel was represented as six components, i.e., R, G, B, H, S and V, in both
RGB and HSV color space. Then each pixel was labeled as either diseased (1) or healthy (0) for each image
from the previous step because it contained only diseased and healthy elements. Considering the
dimensions of an image in this study is 600*600 pixels, there were 360,000 data points, each of which had
6 components of color features and the corresponding diseased label. Manually segmented the diseased
area from the healthy area for 200 images (randomly selected from the whole dataset, see description in
section  2.1.2),  so  that  the  dataset  of  color  features  with  the  corresponding  diseased  label  had
360,000*200 = 72,000,000 data points in total. Since it was a huge dataset and not efficient for model
training, randomly selected 5% points from each image based on a uniform sampling method, so the total
data points were still 360,000.

Methods for automatic differentiation between diseased and healthy parts: Given the above dataset
with color feature and the corresponding segmentation label, the study conducted a supervised machine
learning process to train a bootstrap forest40 model in JMP Pro (Analyze->Predictive Modeling). The
bootstrap forest can learn the decision boundaries between the diseased and healthy pixels as a function
of the nonlinear combination of color components in either RGB or HSV space. This nonparametric model
used instead of the parametric model, e.g., Linear Discriminant Analysis (LDA)41 because based on
exploratory data analysis, it is found the distribution of some color components was not satisfactory to
the model assumption. The 5-fold cross validation method42 was used to train and validate the bootstrap
forest model. Once the prediction accuracy of the bootstrap forest model reaches an acceptable level, it
then can be used as a classifier to differentiate diseased parts from healthy parts in the color space.

Severity estimation: Once the type of each pixel, i.e., either diseased or healthy, in an image can be
classified, the area of diseased and healthy parts can be calculated by counting the total number of pixels
in each corresponding area. Then the ratio of diseased area to the total area of diseased and healthy area
was calculated as the estimation of disease severity. The pixel-counting approach was employed based
on two considerations. The first one was to avoid complexity in dealing with irregular and scattered shapes
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of plant organs, in previous studies their numbers need to be accurately recognized and counted but may
face big challenges in processing complex images taken in real farming conditions. The second one was
to reduce the computational complexity in situations with possible occlusions among a large number of
organs and complex backgrounds, which is often necessary in real-field applications.

Experiments
Experimental settings: This study conducted two sets of experiments to verify the proposed method and
its effectiveness and to test the accuracy of severity estimation on the whole blueberry disease dataset.
In the verification of the proposed methods, firstly, detailed each step of the deblurring technique with
examples to test the effectiveness of removing irrelevant objects in the image for accurate estimation.
Specifically, tested the impact of various degrees of blurriness in images on disease region extraction and
investigated how changes in parameter λ would alleviate this impact; Secondly, demonstrated the
robustness of automatically learning parameters for differentiating diseased parts from healthy parts in
the color space.

Beyond the verification process, the validation process was taken on the whole mummy berry disease
dataset with 400 images to statistically demonstrate its effectiveness. The first validation was to compare
the relative error between methods with or without the process of deblur. The second validation was to
compare the relative error between disease discrimination between HSV and RGB color space.

Evaluation metrics
Ground truth labeling: In this study, the labeling of ground truth was done by computer graphic tools
and supervised by blueberry experts. For each image, the contour line of different types of regions, such
as diseased, healthy parts and background as well as other irrelevant plants were identified manually by
using the built-in image information panel of photoshop software43. Photoshop allows obtaining essential
information about the dimensions of objects in the input image, including their length, height and area
by means of pixel counting. The pixel counting for the diseased region requires manual delineation. After
manually marking the regions, their types and areas were recorded into the dataset. Based on the
information extracted by Photoshop, the ratio of the total number of pixels in the diseased area to the
total pixels in the focused plant area (excluding background and irrelevant objects) was then updated as
the ground truth. The 400 images of the whole blueberry disease dataset (as described in section 2.1.2)
were annotated and their ground truth of disease severity was recorded.

Error of estimation: Relative error (RE) and Root Mean Square Error (RMSE) were used as evaluation
metrics for all the experimental results in this study. The lower the value of these two metrics, the better
the experimental effect will be. The RE is used to explain the relative error between the predicted value
and the true value. The RMSE is used to explain the sample standard deviation between the predicted
value and the true value:

(15)i i

i

Y XRE (%) 100Y


 

(16) 
n 2

i i
i 0

1RMSE Y Xn 

 

In the above equation, n is the number of samples, Yi is the actual value (ground truth) of disease severity
and Xi is the predicted value obtained by our method.
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RESULTS AND DISCUSSION
Verification of deblurring effectiveness: Figure 9 demonstrated the verification of irrelevant elements
removal and gave two examples i.e., mummy berry disease on flowers (Fig. 9a), mummy berry disease on
leaves (Fig. 9b). The deblurring process (see description in section 2.2.2) was performed on the two
examples and the results were given in column II, III and IV in Fig. 9a,b. The sparse defocus map in column
II showed the edge of the corresponding input image. It can be observed that the edge map modeling
the clear parts of the input image was relatively dense, which indirectly reflects the effectiveness of our
method in blur estimation. Interpolation on the edge map showing column II yielded the full defocus
image, denoted as column III, representing the depth information of the image. The higher the grayscale,
the clearer the relevant part including both diseased and healthy plant organs. This result clearly shows
that the proposed deblurring method can effectively separate the focused blueberry plants from the
background irrelevant to disease. Finally, the RGB restoration was performed on the higher grayscale
regions, resulting in the recovered full-dispersion map shown in column IV. By comparing with the depth
information in the full defocus map (column III), it demonstrated that this method can effectively preserve
the clear parts of the image, achieving the goal of removing irrelevant parts. Additionally, it is worth
noting that the proposed method can successfully remove irrelevant content in the mummy berry disease,
demonstrating its applicability and robustness.

Figure 10 also quantitively compared the accuracy of disease severity estimation between the approach
using the deblurring process and the approach where the disease extraction process (see section 2.2.3)
was directly applied without deblurring.  The  ground  truth  of  disease  severity  of  the  sample  image
(Fig. 10a) was 8.83%. The de-blurred image is shown in Fig. 10b. The severity estimated without using the
deblurring process was 38.8% (Fig. 10c), which was much higher than the estimation applying deblurring
(Fig. 10d), the latter estimated as 8.40% with only a relative error of 4.87%.

In addition, to address the problem of the inability to extract diseased parts from images with different
levels of blurriness, this study investigated how parameter λ in equation 11 is related to blur estimation
and tried to find the appropriate setting. This step is important to cope with uncertainties of sharpness

Fig. 9(a-b): Defocus map estimation on two sample images, (a) Mummy berry  disease  on  flowers  and
(b) Mummy berry disease on leaves
I: Input image. II: Sparse defocus map. III: Full defocus map and IV: Recovered full-dispersion map
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Fig. 10(a-d): Display of the impact of de-blurring on the effectiveness of disease extraction, (a) Original
image,  (b)  De-blurred  image,  (c)  Disease extraction performed on the original image and
(d) Disease extraction performed on the de-blurred image

(quality) in field-collected images44. As shown in Fig. 11, for input images with different levels of blurriness
(Fig. 11a-d), using a fixed λ value of 0.005 (suggested by Huihui et al.45 and Yi and Eramian46 as mentioned
earlier), did not adequately preserve the diseased areas (Fig. 11II). That is mainly because changes in
blurriness could affect defocus modeling. In the sensitivity analysis on parameter λ, for different levels of
blurriness, find a suitable λ value that allows for the removal of relatively blurry areas in the image while
preserving the diseased regions (Fig. 11III-IV). From this analysis, a positive correlation between the level
of blurriness and λ is highly likely, i.e., the larger the λ value, the more accurately the non-diseased areas
in the blurry image are removed and the more accurately the diseased areas are preserved.

This study compared the effectiveness of deblurring of our method with the two representative methods,
e.g., Yi and Eramian46 using sharpness and Zhuo and Sim39 using depth information. This comparison was
conducted on four original images (Fig. 12), in which the first and second (Fig. 12 I-II) were incorporated
from  their  papers  and  the  third  and  fourth  (Fig.  12III-IV)  were  from  blueberry  dataset  representing
high- and low-quality images. The detailed differences were embodied in the completeness of deblurring
and stability in dealing with image quality variations.

Verification of disease extraction effectiveness: First, disease extraction effectiveness was compared
between methods using HSV and RGB color space after deblurring. In this comparison, two typical
symptoms of mummy berry disease were considered, which were: Mummy berry disease on flowers and
mummy berry disease on leaves, as shown in scenarios A and B in Fig. 13. Visual comparisons between
the two color spaces were presented in column III and IV, which demonstrated that the extraction under
RGB color space was more likely to confuse the regions with similar colors and the rest of the parts were
not much different from those selected by the HSV method. Qualitatively, extraction under RGB color
space incorrectly included healthy organs and lost diseased regions with similar color. One obvious finding
was that extraction using RGB lost many pixels in the diseased area because their value in R channel
became similar to those in the healthy area due to the changes in light (or shading). This caused many
empty pixels in the diseased area underestimating the severity. Quantitative comparisons also showed that
the relative error of extraction using HSV were almost 10 times lower than using RGB. The former achieved
4.32 and 3.78%, respectively, whereas the latter were 36.3 and 26.2%.
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Fig. 11(a-d): Deblurring effects on images with different levels of blurriness (quality) under various λ
values, (a) Clearly focused image, (b) Slightly blurred, (c) Moderately blurred and (d) Severely
blurred
I: Input image and II-IV: Deblurring results using different λ values

Second, the tests on different levels of shading demonstrated the effectiveness of disease extraction in
HSV space, which was better and more stable than that in RGB color space, as shown in Fig. 14a-c. There
existed a substantial disparity between the two extraction approaches in addressing the interference of
shading on disease symptoms. Disease extraction using HSV was more stable across different levels of
shading whereas disease extraction using RGB was more sensitive to light changes. A huge number of
pixels in the diseased area was lost (which became empty in the diseased area) in the RGB extraction when
the diseased symptom was heavily shaded. The explanation is that when the disease symptom was under
normal light conditions, the most significant representation of disease visual symptom (red color), i.e., the
pixel values in R channel was concentrated on the right of the histogram. However, the pixel values R
channel shifted to the left when the diseased area was shaded. This shift due to illuminance change makes
disease extraction using RGB color space a less applicable option compared to HSV, in which a
homogenous parameter setting can be satisfied.

Moreover, to validate the generality of the proposed method in different scenarios with varying
background complexity, three types of images were selected: No background (taken at lab view) (Fig. 15a),
simple background (Fig. 15b) and complex background (Fig. 15c). In this case, the original image is shown
in Fig. 15I, the de-blurred image is shown in Fig. 15b and the effects of disease extraction are displayed
in Fig. 15c. The estimated severity for the lab view image was 17.4% with  a  relative  error  of  1.2%;  the
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Fig. 12: Comparison of the deblurring effectiveness of our method with two recently developed methods
on four original images

Fig. 13(a-b): Verification of disease extraction methods using HSV or RGB color space on two original
images (a-b) Typical symptoms of mummy berry disease, (a) Mummy berry disease on flowers
and (b) Mummy berry disease on leaves
I: Original image, II: Image after deblurring, III: Disease symptom extracted using HSV color space and IV: Diseased
symptom extracted using RGB color space, respectively

estimated severity for the simple background image was 8.9% with a relative error of 2.2%; the estimated
severity for the complex background images was 25.2% with a relative error of 3.7%. An expanded
validation on 50 images in each background type was conducted. Overall, current study method using lab
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Fig. 14(a-c): Comparison of disease extraction effectiveness using HSV or RGB color space between
different levels of shading on diseased symptoms, (a) No shading, (b) Moderate shading and
(c) Severe shading
I: Original image, II: Disease symptoms extracted under RGB space and III: Disease symptoms extracted under HSV
space

view images achieved an average relative error of 1.75%, while the simple and complex backgrounds
achieved 2.75 and 4.80%, respectively. Although the relative error in complex backgrounds was twice
higher as that in the lab view images, less than 4% of relative error in field applications is still promising.

This  study  conducted  segmentation  of  disease  from  healthy  regions  on   the   randomly   selected
200 blueberry images (100 each for mummy berry disease on flowers and mummy berry disease on leaves
from the original dataset). The bootstrap forest model learned the decision boundary (function) that can
distinguish diseased parts from healthy areas with an accuracy of over 97% (Fig. 16) in the HSV color space
based on the 5-fold cross-validation. Comparatively, the same bootstrap forest model in the RGB color
space only achieved 80% accuracy, which was significantly lower and less applicable. This large gap
between RGB and HSV approaches was probably due to the superior capability to deal with light variations
in field scenarios. Then the learned bootstrap forest model can be used as a classifier to automatically
differentiate diseased parts from healthy parts in the HSV color space.

Images acquired in field conditions are susceptible to changing light, occlusion and shadows, i.e., they are
more sensitive to brightness. As a less homogeneous color space, all three components of RGB are closely
related to luminance, i.e., whenever the luminance changes, all three components change accordingly. This
is a big defect for RGB to deal with visual trait changes under varying light conditions. Based on the RGB
color space analysis conducted on our blueberry disease images, it is clear that under normal light
conditions, mummy berry disease has relatively high values in the R channel. However, the R values shift
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Fig. 15(a-c): Comparison of disease extraction effectiveness between different background complexities.
(a) Disease image was taken at lab condition (no or clear background), (b) Disease image with
simple background and (c) Complex background is taken from field view
I: Original, II: Deblurred images and III: Extracted symptoms

to left when the diseased area is shaded (Fig. 17). This requires different parameter settings for various
light conditions, which is much less feasible in practical applications. On the contrary, the HSV space with
three channels of hue, saturation and lightness can effectively deal with color changes due to varying light.
Our experiments on field images showed that the extraction effect of the foci by HSV was much better
than that of the RGB method. This is because, under the HSV space, it is easier to track objects of a certain
color than RGB.

Testing accuracy of severity estimation: After the verification process, the validation process was taken
on the whole mummy berry disease dataset with 400 images to statistically test its effectiveness.
Deblurring is a critical step in removing irrelevant elements in a given image to accurately estimate disease
severity. Figure 18a showed that the average relative error of severity estimations using the deblurring
process was 3.65 with a 95% CI between 3.06 and 4.24%. However, the relative error increased to 50.29%
(95% CI between 41.09 and 59.49%), which was 13 times higher when the deblurring process was not
applied. This significant improvement highlighted the importance of deblurring in removing irrelevant
elements and validated our assumption.

The effectiveness of disease extraction using HSV was also statistically significantly different from the
approach using RGB (Fig. 18b). For the two typical symptoms, i.e., mummy berry disease on flowers and
mummy berry disease on leaves, extraction under HSV achieved the average relative error of 3.07 and
4.19%, respectively. Whereas extraction under RGB had much higher relative errors, which were 24.74 and
22.34%, respectively. This result also proved that current study method can effectively and accurately
estimate the severity across different types of symptoms.
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Fig. 16: Decision boundaries learned by the bootstrap forest model for classification between diseased
and healthy areas as a function of a nonlinear combination of the three features H, S and V in the
HSV color space

This study presented a fast and accurate severity estimation algorithm for wild blueberry diseases by
utilizing computer vision-based techniques. In current study method, two key innovations were
established to solve two problems for analyzing field-taken images. Firstly, this study employed a novel
deblurring process using defocus estimation to effectively remove blurred backgrounds so that the
diseased and healthy target organs can be separated from the irrelevant background. This approach was
also enhanced by using adjustable parameter settings so that low-quality images such as those without
clear focus could be properly handled. Secondly, by converting RGB features into HSV space following a
machine learning model bootstrap forest, diseased parts can be accurately segmented from healthy parts
from the output of the first step. This approach can effectively remove the negative impact of light
variations such as shading on diseased organs, which makes it an applicable and promising method in real
farming conditions.

Firstly, this study effectively removes irrelevant objects from the images for severity estimation through
the means of deblurring. Separating irrelevant background (such as soil, sky and other plants) from the
foreground consisting of only diseased and healthy plant organs is a critical step. Many approaches using
machine learning methods have been developed to deal with the blurry parts of images for disease
extraction and severity estimation44,45. Two types of cutting-edge methods have been developed recently.
One is to directly decide the blur and sharp boundaries based on the sharpness of the image. The other
is to achieve defocus blur separation through depth maps. Yi and Eramian46 proposed a simple but
effective clarity metric, which was based on the distribution of uniform local binary patterns (LBP) in
blurred and non-blurred image regions. This method directly utilizes the sharpness of an image to
measure blurry areas. However, the boundaries in the segmentation maps obtained appear jagged if there
is a significant depth discontinuity between the foreground and background. This defect is because
sharpness is measured locally. When using local windows, regions with different levels of sharpness are
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Fig. 17(a-c): RGB Histogram of pixels for diseased and healthy areas under three shading levels, (a) No
shading, (b) Moderate shading and (c) Severe shading

Fig. 18(a-b): Results of disease severity estimation on the whole blueberry  disease  image  dataset  with
400 sample images, (a) Comparison of the relative error between methods with or without
the process of deblur and (b) Comparison of the relative error between disease discrimination
between HSV and RGB color space
MB: Mummy berry disease
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inevitably merged, especially near the edges where depth discontinuity occurs. Zhuo and Sim39 used edge
width as a reference for depth measurement under the assumption that edges in blurred regions are wider
than those in sharp regions. The key point is that a continuous defocus map is obtained by propagating
the sharpness measures at the edges to the rest of the image using image matting36. Their approach
utilizes the depth information of the image to distinguish clear and blurry areas but relies on high-quality
images with a clear focus.

Secondly, this study extracts the disease areas under different lighting conditions. Previous disease
extraction methods in HSV space by Hamuda et al.47, Khan and AlGhamdi48 and Waldamichael et al.49,
relied on high-quality images captured in controlled laboratory environments, avoiding light interferences
present in field conditions. This method employed a machine learning model bootstrap forest to
automatically learn classification parameters in the HSV space, achieving an accuracy of 97%  based  on
5-fold cross validation on 360,000-pixel samples. It enabled one parameter setting for various light
conditions while keeping high disease extraction accuracy.

Finally, the method proposed in this study is compared with similar methods and the advantages of this
article are analyzed. There are two major approaches for disease severity estimation in crops: Quantitative
assessment  based  on  image  segmentation  of  diseased  areas  and  graded  qualitative  assessment.
Wang et al.50 proposed a two-stage cucumber leaf disease severity classification model with the fusion
of DeepLabV3+ and U-Net (DUNet) in complex backgrounds. They calculated the severity of the disease
by calculating the ratio of the area of the disease spot to the total area and the average accuracy rate
reached 92.85%. Guo et al.51 segmented the stripe rust spots of wheat spectral images and graded the
disease level by calculating the spot area to the total leaf area, with an accuracy of 98.15%. These studies
used traditional image processing methods on images with simple and clear backgrounds in controlled
environments. One obvious disadvantage of these methods is that without extraction of depth
information, they are not able to deal with images with complex backgrounds and differentiate diseased
objects. However, applications in real farming conditions often encounter images with occlusions and
interferences. The study approach uses a novel deblurring technique to effectively remove irrelevant
backgrounds by considering the depth of information of relevant objects. Furthermore, with the assistance
of parameter adjustments, this approach can also effectively extract diseased objects from low-quality
images, showing robustness in field applications.

Deep learning methods in disease severity estimation are important for efficient disease management52,53.
Since training deep neural networks requires a large number of labeled images, measuring and rating
severity for these images are very labor intensive. Therefore, they have been widely used to classify the
level of disease severity, instead of giving an accurate rating percentage. In this framework, the disease
severity is manually divided into several classes by experts, from which the convolutional neural networks
can be trained54. Then the level of severity in the input images can be directly classified with powerful
automatic feature learning capabilities, avoiding image segmentation. Although a direct comparison
between our method and deep learning approaches has not been done, this study can still assess the
potential  role  of  our  method  from  another  perspective.  Having  the  capability  of  accurately  rating
disease severity in field images, our method can serve as an effective auto-labeling tool to assist in
labeling or grading the severity of diseases  in  a  given  image  with  blueberry  disease.  By  doing  so,
the number of labeled images can be sufficiently increased, which will expand the number of samples
which deep learning methods can be applied. This work therefore provides a solid foundation for deep
learning-based  approaches  to  disease  severity  estimation  by  solving  the  labor-intensive  rating
problem.
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CONCLUSION
To conclude, we developed a fast and accurate severity estimation algorithm for wild blueberry diseases
by utilizing computer vision-based techniques. Based on the statistical analysis from a large amount of
field-collected images, our method can effectively identify diseased and healthy plant organs as
foreground in an image and make an accurate estimation with less than average 5% relative error. There
are two innovations in our approachin. First, we employed a novel deblurring process using defocus
estimation to effectively remove blurred backgrounds so that the diseased and healthy target organs can
be separated from the irrelevant background. This method was also enhanced by using adjustable
parameter settings so that low-quality images can be properly handled. Second, by converting RGB
features into HSV space following a machine learning model bootstrap forest, diseased parts can be
accurately segmented from healthy parts from the output of the first step. Our method can alleviate
negative impact of light variations in real farming conditions. Additionally, this approach can serve as an
auto-labeling tool for the automatic rating of disease severity for field-taken images, on which deep
learning models can be trained without the limitation of data scarcity.

SIGNIFICANCE STATEMENT
Blueberries, as an important economic crop worldwide, are increasingly facing significant disease issues.
The purpose of this study is to estimate the severity of two common blueberry diseases using machine
vision technology. The results indicate that the method proposed in this study has high accuracy and can
effectively estimate the severity of blueberry diseases, which is of great significance for the prevention and
treatment of blueberry diseases and precise medication.
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