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ABSTRACT
Background and Objective: Mycotoxin contamination in maize and groundnuts has undermined Kenya's
health care system for decades. This study aimed to determine the diversity of mycotoxin fungi in maize,
groundnut and soils of Western Kenya and farmers' awareness of on-field mycotoxin mitigation measures.
Materials and Methods: Infected maize, groundnut and soil samples were collected from Homa Bay,
Migori,  Siaya  and  Busia  Counties.  Semi-structured  questionnaires  were  used  to  collect socio-
economic  data  on  mycotoxin  awareness  and  mitigation  measures  used  by  farmers.  Pure fungal
isolates were obtained for diversity assessment on PDA and incubated at 25-27°C. A light microscope at
×400 magnification was used for the morphological identification of spores and mycelia, while species
were identified using plant pathology reference books and journals. Results: Thirty-five diverse fungal
isolates were obtained from all samples. The genus Aspergillus was the highest in terms of isolation
frequency, with 14 diverse pathotypes, followed by Penicillium (8 isolates), Fusarium (4 isolates) and the
rest (9 isolates). Busia County had the most diverse number of isolates, while Siaya had the least. Among
sample categories, most fungi were obtained from soil samples (30 isolates) while maize and groundnuts
recorded 19 and 9 isolates respectively. While 22 isolates were specific to counties, 13 were
environmentally non-specific. Farmers in Western Kenya had partial knowledge of best pre- and post-
harvest mycotoxin mitigation practices. Conclusion: Mycotoxin-producing fungi were the most dominant
fungi in maize, groundnut and soils of Busia, Siaya, Homa Bay and Migori counties of Western Kenya.
These fungal species were highly specific to the environments.
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INTRODUCTION
Mycotoxins contaminate various food substances and agricultural products worldwide, posing serious
health risks to humans and animals1,2. The presence of mycotoxin in significant quantities may induce
acute to chronic health effects such as endocrine disruption in humans and animals3. Human exposure
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to mycotoxins may result from consumption of plant-derived foods with toxin adulteration. Additionally,
exposure may be instigated by metabolites in animal products such as meat and eggs or exposure to air
and dust-containing toxins4. Over 65% of the Kenyan population is exposed to chronic levels of mycotoxin
poisoning5-6. Common mycotoxin-producing fungi, such as Aspergillus flavus species, thrive well in
substrates of grains such as maize and groundnuts which are the most widely consumed crops7-9. Maize-
groundnut intercrops are very popular in the Western region of Kenya10. This is because groundnut crop
is known to fix large amounts of nitrogen and is considered an ideal option for rotation and intercropping
with maize fields to boost yields11-13. The cereal-legume intercrop system is highly practiced by farmers
as a mean of diversification to mitigate climate change and for managing striga weed menace which is
a major constraint to crop productivity in this region.

However, a bulk of farmers, producers and consumers have little knowledge of best farming practices
against mycotoxin accumulation in grain/field or the experience in dealing with mycotoxin contamination
in foodstuff and grain14-16. Therefore, people in these regions are at a high risk of aflatoxin contamination.
Inappropriate pre-and post-harvest procedures augment colonisation by mycotoxin-producing fungi of
field crops and post-harvest produce17-20. Inadequate drying and improper storage coupled with high
temperature and humidity levels are essential contributing factors to the accumulation of mycotoxins up
to unacceptable levels in developing countries21-23. The risk is further aggravated as these farmers chiefly
sell their surplus through informal markets which are highly unregulated5,24. Such farmers' practices are
risk factors for mycotoxin contamination. Enhancing farmer, producer and consumer knowledge on
mycotoxin mitigation measures right from the early stages of production to storage is highly desired as
a means to mitigate the problem of mycotoxin contamination. However, sufficient farmers' knowledge on
causes and sustainable management of these mycotoxin fungi on soils, maize and groundnuts in Western
Kenya  is  still  lacking  several  studies  conducted in Western  Kenya  such as those of Were et al.25 and
Lewis et al.26 in Homa bay and Bungoma counties detected the presence of aflatoxin in these regions.
Others such as Lewis et al.26 and Nelson et al.27 determined aflatoxin levels in sample grains. Additionally,
information on the occurrence, diversity and farmer knowledge of mycotoxin fungi in Busia County among
others is still inadequate. This implies that the diversity of mycotoxin-producing fungi and non-toxigenic
species in the region is a critical research gap and a vital step in identifying potential bio-control agents.
Therefore, this study was established to assess the diversity of fungi in maize and groundnuts in Western
Kenya and the levels of awareness of the causes and mitigations of aflatoxins in maize and groundnut
grains among smallholders in Western Kenya.

MATERIALS AND METHODS
Study location and environmental characteristics: The study duration was from September 2019 to
April 2022. Surveys were conducted in three sub-counties (sub-regions) of four counties of Western Kenya
namely Busia, Siaya, Homa Bay and Migori. The four study regions were selected on the basis that maize
and groundnuts are among the major food crops grown by the majority of farmers there. The four
sampling sites have different agroecological conditions, ambient temperatures and annual rainfall. The
climatic  data  of these four regions is unique and favours mycotoxin fungi establishment and growth
(Table 1).

Sample collection, sample size determination and sampling technique: The study areas were grouped
into clusters based on regional boundaries32. Sub-counties were selected randomly from each cluster to
represent a sampling hub. Three significant towns serving sub-county headquarters within the four
counties were selected as sampling hubs. The sampling sites include villages representing different AEZs
within a 20 km radius of the sampling hub. The GPS-detecting applications and administrative boundaries
were used for site location and mapping. Two hundred and fifty grams each of maize, groundnut grains
(from the previous season) and soil samples were collected from selected farmers with a long history of
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Table 1: Weather details of sampling sites of Western Kenya
Country Annual average temperature (°C) Annual rainfall (mm) Highest humidity (%) Source
Busia 21.8 2291 82.59-May Atsiaya et al.28

Siaya 21.4 2154 82.74-April Maina et al.29

Homa Bay 21.7 1331 71.5-May Ogenga et al.30

Migori 21.0 1522 76.88-April Olela et al.31

maize-groundnut intercropping systems. The process generated information on the incidence and
prevalence of aflatoxin under different farming practices. During the sample collection, a total of 46 maize
and groundnut farmers, 11 (Busia), 5 (Siaya), 15 (Homabay) and 15 (Migori), were selected and interviewed
on grain storage methods and level of awareness on mycotoxin fungi with reference to commonly
recommended mitigation measures using a semi-structured questionnaire33. Data on farmer level of
awareness and commonly practiced mitigation measures in the region were subjected to analysis using
descriptive statistics and presented in bar graphs with standard error bars using Microsoft Excel 365.

Isolation and culture purification of grain and soil fungi: Two hundred and fifty grams of grain (maize
and groundnut) and soil samples which were aseptically collected from each farmer as described in section
2.2 above were used for fungal extraction. Isolation and purification of the mycotoxin fungi from diseased
groundnut, maize seed and soil was done according to Salano et al.34 and Owino et al.35. Five grains per
sample were surface sterilised in 1% sodium hypochlorite (NaOCl) for 2 min, rinsed thrice in sterile distilled
water, then plated on sterile PDA media and incubated at 27°C in the dark. After 5 days, a single conidium
representing  each  collection  was  transferred to a freshly prepared PDA and set at similar conditions.
Sub-cultures were made from the emerging colonies and pure cultures were obtained for subsequent
studies36. Soil samples were passed through a 2 mm mesh sieve to remove crop residues and 1 gram of
the sample was suspended in 9 mL sterile distilled water. The suspension was serially diluted to 10G3 and
a 200 μL aliquot of the dilution was uniformly spread in duplicates on PDA37. The plates were incubated
for five days, after which colonies of Aspergillus and other fungi were counted and the number of Colony
Forming Units per gram (CFU/g) of soil was calculated according to Okayo et al.38:

Number of coloniesSoil (CFU / g) = Amount plated×dilution

Fungal diversity assessment and identification: Mycotoxin fungal isolates from all regions of the study
were subjected to morphological descriptive assays and identification was done using various pathology
reference journals such as39-43. Additionally, the assessment of diversity was based on observations using
a biological light microscope (model MOMxianweijing2933 from Beijing, China) at ×400 magnification as
well as in the petri-dishes to classify and identify isolates with respect to spore shape and mycelial growth
characteristics such as mycelial colour, (front and reverse side colour) and texture. The Isolates were also
grouped based on agro-ecological zones (counties) of isolation to document those specific to certain
regions and those found across all the regions considered in the study.

RESULTS
Morphological diversity and identification of soil and grain fungi in Western Kenya: Diversity
assessment and identification assay recorded a total of 35 diverse fungal isolates from groundnut grain,
maize grain and soil samples across the four counties of Western Kenya. Out of the 35 diverse isolates,
the genus Aspergillus was the highest in terms of frequency with 14 diverse pathotypes, followed by the
genus Penicillium (8 isolates) and Fusarium (4 isolates), respectively (Table 2 and 3). Also, even within a
fungal species, significant morphological differences were observed physically in plates and at the
microscopy level in terms of mycelial colour, substrate colour and spore shape. While Busia County had
the highest number of diverse isolates in all sample types, Siaya County had the lowest number of isolates.
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Table 2: Occurrence and isolation frequency of environmental/region-specific fungal isolates
Counties in Western Kenya

---------------------------------------------------------------------------------------------------------------------------------------------------
Busia Siaya Homa Bay Migori

Identified and unidentified fungus ----------------- ----------------- ----------------- ----------------- Frequency of
(region and sample specific) M G S M G S M G S M G S isolation
MMT3 (Unidentified) + - - - - - - - - - - - 1
Aspergillus terreus (MCBT6) - - + - - - - - - - - - 1
Aspergillus tubingensis - - + - - - - - - - - - 1
Aspergillus candidus - - + - - - - - - - - - 1
Monascus species - - + - - - - - - - - - 1
MCMT4a (Unidentified) - - + - - - - - - - - - 1
MCMT3 (Unidentified) - - + - - - - - - - - - 1
MCMBT3 (Unidentified) - - + - - - - - - - - - 1
Arthrinium sacchari - - - - - + - - - - - - 1
Coniothyrium olivaceum - - - - - + - - - - - - 1
Epichloe species - - - - - + - - - - - - 1
Aspergillus terreus (MGW1) - - - - - - + - - - - - 1
Aspergillus flavipes - - - - - - + - - - - - 1
Aspergillus tamarii - - - - - - - + - - - - 1
MCHB2 (Unidentified) - - - - - - - - + - - - 1
MCRN1 (Unidentified) - - - - - - - - + - - - 1
Aspergillus species (MSE2) - - - - - - - - - + + + 3
Aspergillus parasiticus - - - - - - - - - + - - 1
Aspergillus oryzae - - - - - - - - - - - + 1
Penicillium species (MCSW3) - - - - - - - - - - - + 1
Phialemoniopsis endophytica - - - - - - - - - - - + 1
Aspergillus species (MCSW1) - - - - - - - - - - - + 1
Number of fungi per sample 1 0 7 0 0 3 2 1 2 2 1 5 24
Number of fungi per region 8 3 5 8
(Country)
M: Maize grain, G: Groundnut grain and S: Soil sample

Table 3: Occurrence and isolation frequency of environmental non-specific fungal isolates
Counties in Western Kenya

---------------------------------------------------------------------------------------------------------------------------------------------------
Busia Siaya Homa Bay Migori

----------------- ----------------- ----------------- ----------------- Frequency of
Isolate identity M G S M G S M G S M G S isolation
Aspergillus flavus (MUG5) + - - + - + + - - + - - 5
Aspergillus niger + + + + - + - - + + - + 8
Penicillium aurantiogriseum + + - - + - - + + - + - 6
Penicillium species (MMT2) + + + - - - - - - - + - 4
Fusarium oxysporum (MGW5) + - + + + - + - - - - - 5
Fusarium proliferatum + - - - - + - + - - - - 3
Aspergillus nomius - - + - - - - - + - - - 2
Aspergillus flavus (GMT3) - + - - + - - + - - - - 3
Fusarium species (MCBT1) - + + - - + - - + - - + 5
Penicillium chrysogenum - - + - - - - + - - - + 3
MCMT4b (Unidentified) - - - - - + - - + - - - 2
Trichoderma harzianum - - - - - - + - - - - + 2
Biatriospora species - - - - - - - - + - - + 2
Number of fungi per sample 6 5 6 3 3 5 3 4 6 2 2 5 50
Number of fungi per region 17 11 13 9
(Country)
M: Maize grain, G: Groundnut grain and S: Soil sample

Aspergillus flavus (MUG5) was the most common isolate in maize samples, as it was detected in all sample
regions. This isolate, however, was not detected in groundnut samples. Fusarium oxysporum (MGW5) and
Aspergillus niger (MBT2) were detected  in  three out of four counties. Aspergillus flavus (GMT3) was the
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Fig. 1: Environmental specific diverse fungal isolates
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most common isolate among groundnut samples and was detected in Busia, Siaya and Homa Bay
counties. Alternately, Aspergillus niger (MBT2) was the most common isolate in soil samples, as was
detected in all counties of the sample regions (Table 2). Thirty-one isolates were characterised to the
generic level, while four isolates remained unidentified.

Environmental specificity and non-specificity of fungal isolates in Western Kenya: Generally, the
majority of the fungal species isolated from maize, groundnut and soil samples were specific to the
environments in which the samples were collected (Fig. 1). Twenty-two diverse fungal isolates were specific
to one region/county (Fig. 1). Among the isolates, 10 were identified as Aspergillus species, with only one
isolate  from  the  Penicillium  genus. Most of these isolates were isolated from Busia County samples
(Table 2). However, out of the 9, Busia County-specific isolates, 8 were isolated from soil samples, one
isolate obtained from maize samples and none detected in groundnuts. Siaya County recorded the least
number of unique isolates (3) detected in soil samples only. Additionally, out of the 22 region-specific
isolates,  only  four  were specific to maize samples, while only one was specific to groundnut samples
(Table 2).

On the other hand, thirteen diverse fungal isolates were non-specific to their environments (Fig. 2). Among
these  isolates,  12  were  detected in Homa Bay County and 10 in Busia County, while Siaya and Migori 

Fig. 2: Environmental non-specific diverse fungal isolates
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Fig. 3: Colony forming units per unit gram of fungal isolates in soil samples  from Busia, Homa Bay, Migori
and Siaya Counties

Fig. 4: Response frequencies of farmer awareness on mitigation measures against mycotoxin
accumulation in groundnut and maize

counties recorded 8 diverse fungal isolates each (Table 3). However, in terms of isolation frequency, these
isolates were most frequently detected in Busia County followed by Homa Bay County and lastly in Migori
County.

Colony Forming Units (CFUs) of soil-inhabiting fungal species in Western Kenya: At the county level,
there were no significant differences in CFU/g between Busia, Homa Bay, Migori and Siaya Counties. In
terms of variation from one CFU to the other, Busia, Homa Bay and Migori were the highest. However,
Siaya had the least variation in terms of CFU, though with the highest mean above 17 CFU/g. Additionally,
with respect to sample distribution (whiskers), Busia County recorded the highest number of colony-
forming units per unit gram (>30 CFU/g), while Homa Bay had the lowest (<5 CFU/g). Also, Siaya had the
highest mean, while Homa Bay County had the lowest mean of CFU/g in soil samples (Fig. 3).

Farmer awareness levels on mitigation of mycotoxins: Farmer assessments on mycotoxin management
revealed low awareness levels on mitigation measures. Proper drying and proper storage of grains were
the most known mitigation measures against mycotoxin accumulation as they recorded at least 40%
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awareness levels across the four counties. However, other mitigation measures such as the use of resistant
varieties, use of chemicals and crop rotation scored less than 20% across the four counties (Fig. 4).

DISCUSSION
Fungal diversity and environmental specificity: The fungal diversity assessment study revealed that the
soils of Western Kenya are enriched with a comprehensive genetic bank of soil and seed-inhabiting fungi.
Therefore, mycotoxin accumulation remains a major threat to safe maize and groundnut products in
western Kenya. This finding was mainly because the most predominant fungal isolates from the collected
samples belonged to the three major mycotoxin-producing genera: Aspergillus, Penicillium and Fusarium66.
The great diversity displayed in mycotoxin and infectious fungal species isolated portrays their abundance
and possible widespread distribution through evolution36,67. For example, Aspergillus flavus was the most
frequently detected fungus and occurred in two different pathotypes implying that the fungus has a great
evolutionary potential. In addition to confirming its ubiquitous nature, the findings may also imply that
mycotoxin accumulation will remain a challenge in the region for decades if not adequately alleviated68-70.
High diversity in mycotoxin-producing fungi is an imminent management threat. However, such diversity
also sets the stage towards the identification and development of biological mycotoxin control measures
where non-toxigenic strains are identified and used.

In addition to diversity within a genus, inter-genera diversity was the highest. The presence of many fungal
isolates from other genera insinuates the possibility of identifying other bio-control agents against
mycotoxin accumulation in grains and soils. Aspergillus flavus (MUG5) was detected in both maize and soil
samples. This finding implies that the fungus is both a soil and seed-borne pathogen. These findings
compare well with those of Monda et al.71 who isolated Aspergillus flavus from soil samples obtained from
maize fields and suggested that the most effective way of managing this pathogen is by reducing its
accumulation in the soil environment as well as on grain. Further analysis of fungal diversity disclosed that
the majority of fungal isolates were obtained from the soil samples (Table 2 and 3). By comparing the
counties, the magnitude of fungal diversity in soil samples positively correlated with diversity levels in
maize and grain samples (Table 3). For example, Busia County also had the most diverse isolates of all the
sample types. However, this scenario was more evident in mycotoxin fungi than in the rest of the isolates.
This could be associated with the nature of their spores. For example, Aspergillus and Penicillium species
produce many air-borne spores and hence are transmitted directly from the soil to seed in the field72,73.

Besides soils, maize grains were more infected by fungal isolates obtained in the study than groundnuts.
This occurrence could be due to a pathogen or race specificity. The division of Forma specialis of these
mycotoxin fungi into different races explains why fungi with similar morphologies may have dissimilar
infection rates on host plants74. However, this study cannot fully ascertain this phenomenon because the
fungal isolates were not positively identified to the race level. Also, the grains assessed were only samples
from the study region; hence the study is bound by the limitation of the sampling process.

For sample-specificity, 22 out of the total 35 fungal isolates were environmentally specific. This finding was
expected due to the eminent environmental differences known to exist among the four counties. Further,
the occurrence and prevalence of toxigenic and non-toxigenic fungi is highly dependent on the
environmental conditions75. Busia County had the most diverse number of isolates, while Siaya County had
the least diverse number of isolates (Table 2 and 3) probably due to variations in awareness levels on
mitigation of fungal accumulation and variations in environmental conditions76. Respondents from Busia
County were least aware of post-harvest mitigation measures against the accumulation of aflatoxin fungi.
Such unawareness is a gateway to practices such as improper drying of grains providing sufficient
moisture for fungal growth and proliferation and this may contribute to the diversity and abundance of
fungi77.
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Farmer awareness levels and mycotoxin fungal diversity: Farmers in the sampled regions had little
knowledge of mitigation measures against mycotoxin accumulation in grains (Fig. 4). These findings add
tremendously to the scientific body of knowledge by revealing the current status of aflatoxin awareness
levels in Western Kenya regions a subject that has been scarcely documented78-81. This knowledge has a
ripple effect on fungal diversity because farmers are unlikely to deliberately use pre-and post-harvest
practices that inhibit mycotoxin accumulation. For example, a common storage practice such as the use
of gunny bags favors moisture build-up promoting fungal growth when placed on floors21,82,83. Low
awareness levels on mycotoxin mitigation encourage practices that expose the grains to conditions that
favors penetration and multiplication of mycotoxin-producing fungi84-86. Farmers are also unlikely to
consistently practice programs such as crop rotation which reduce inoculum load and insect pest
infestations87. Understanding these aspects by farmers is likely to reduce the inoculum load of most
toxigenic fungi. Risk exposure indicators include knowledge of the causes of aflatoxin contamination and
possible mitigations5,6. This knowledge is also mostly shared in farmer discussion forums. However, such
initiatives are not practiced consistently in Western Kenya.

Implications, applications, recommendations and limitations of the study: The study findings are vital
since they prompt further ground-truthing on the status of mycotoxin risk and vacuity of sustainable
solutions in Western Kenya. The occurrence nature of identified fungal species in terms of diversity and
environmental specificity is valuable information that can guide relevant geographical scope for identified
bio-controls. Critical limitations of this study include the small geographical scope and number of plant
species assessed. Additionally, molecular species identification was not conducted. Therefore, genetic
chractersization of fungal species identified and in-vitro studies to identify species with the capacity to
suppress mycotoxin fungi in Western Kenya is recommended.

CONCLUSION AND RECOMMENDATIONS
The study findings demonstrated that Aspergillus species are the most dominant fungi in maize,
groundnut and soils of Busia, Siaya, Homa Bay and Migori Counties of Western Kenya. Although most
fungal isolates in the region are sample and regional specific, mycotoxin fungi are non-specific to
environments and samples. This study also revealed that farmers in Western Kenya have little awareness
of appropriate mycotoxin mitigation measures. Therefore, there is a need for characterization and
identification of mycotoxin-producing fungi in the region for sustainable management. Additionally,
deliberate efforts need to be made to enhance information dissemination to farmers on on-farm
mycotoxin management strategies.

SIGNIFICANCE STATEMENT
This study aimed to assess the diversity of mycotoxin fungi in maize, groundnut and soils in Western
Kenya and farmers' awareness of mycotoxin mitigation measures. Thirty-five diverse pure cultures of
fungal isolates were obtained from sampled cereal grains and soils of Western Kenya. The genus
Aspergillus had the highest isolation frequency, with fourteen diverse pathotypes, followed by Penicillium
(eight isolates), Fusarium (four isolates) and the rest (nine isolates). Busia County had the most diverse
number of isolates, while Siaya had the least. While twenty two isolates were specific to counties, thirteen
were environmentally non-specific. Farmers in Western Kenya had partial knowledge of best pre- and
post-harvest mycotoxin mitigation practices.
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