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ABSTRACT
Background and Objective: Knowledge of the spatial distribution of trees and stands is very important
in forest management strategies. This study investigated whether spatial interpolation methods could
predict the spatial distribution of tree species and their biomass in a mixed forest of Yangambi Biosphere,
Democratic Republic of Congo. Materials and Methods: A 90×90 m grid was installed in a mixed forest,
the coordinates of each selected tree were recorded with a GPS and the Diameter at Breast Height (DBH)
measured. The 3 biomass was estimated with an  allometric  equation.  Data  was  transferred  to  ArcGIS
10.3 software where maps predicting the spatial distribution of tree species and biomass were made using
ArcGIS-Geostatistical Analyst Extension. The 7 spatial interpolation methods were tested: Inverse Distance
Weighting (IDW), Simple, Ordinary and Universal Kriging (SK, OK and UK), Local Polynomial Interpolation
(LPI), Global Polynomial Interpolation (GPI) and Kernel Interpolation (KI). Results: Scorodophloeus zenkeri
was the most dominant plant species (31%), followed by Strombosia pustulata (12%) and Microdesmis
yafungana (8%). The 3 biomass ranged from 100.32 to  8777.30  kg  with  a  mean  value  of  2866.70  kg.
The coefficient of variation was 72.98% with a standard deviation of 2092.30 kg, suggesting that forest
biomass was highly variable. The LPI and GPI methods on the one hand, OK and UK on the other gave
similar predictions of tree species. The species spatial distribution verification was nearly consistent with
IDW. Conclusion: There is a need to expand the study area later and conduct further investigations to
refine the predictions.
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INTRODUCTION
The Democratic Republic of Congo (DRC) forests cover an area estimated at 1,280,042.16 km² where there
is an immense tropical forest, the second largest on the planet1. This forest needs to be studied, preserved
and monitored for the benefit of humanity2. With regard to three species, forest modelers have developed
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many static or dynamic models to understand and predict the evolution of trees and stand. Many of these
models also incorporate mortality caused by competition between trees3. Other types of models relate
to various complementary elements: Regeneration, branching or the elaboration of the quality of the
wood4. Thus, to simulate the evolution of a forest stand, it is often necessary to involve a whole chain of
models3. The distribution of tree species is intimately associated with ecological, biotic and abiotic factors,
therefore changes in these factors can alter the geographic distribution of plant species and the
composition of forests5. Describing the geographic distribution of plant species relies on understanding
the relationships between species and their environment6. National inventories represent an important
source of information on the geographical distribution of species7. However, this information often
remains incomplete in view of the immense territory to be covered8. Therefore, inventory data may present
spatial, temporal or taxonomic and environmental biases9. Recent studies have shown that different
prediction methods can lead to very divergent results10, without implying that one method is no longer
true than another one. Rather, it derives from the fact that the different prediction methods are sensitive
to the available data and the mathematical functions used11. Many of these models also incorporate
mortality caused by competition between trees. Other types of models relate to various complementary
elements: Regeneration, branching or the elaboration of the quality of the wood. Thus, to simulate the
evolution of a forest stand, it is often necessary to involve a whole chain of models3,6. In this context,
geostatistical methods can represent an effective instrument for filling in the gaps in inventories12.
Methods for predicting the geographic distribution of species do not seek to describe a realistic process
but rather are an approximate description of the ecological niche of a species in space13,14. Several authors
have emphasized the importance of biomass estimates in the monitoring and management of forest
carbon storage1,5. Although allometric equations have been the best tools to estimate forest biomass, it
has been suggested that in some instances, the estimations are highly uncertain6,7. Allometric equations
calculate biomass using tree parameters such as Diameter at Breast Height (DBH), height and/or wood
density. Although tools for measuring DBH, tree height and/or wood density are readily available,
however, obtaining data on these parameters for each individual tree can be a time-consuming process
that may require a great deal of manpower. Therefore, randomly taking a few measurements of tree DBH
to calculate the biomass and predicting the rest of these parameters can help to quickly identify forest
areas of interests in term of tree biomass management. The objective of this study was therefore to
determine the most appropriate and efficient spatial interpolation methods for predicting the
geographical distribution of tree species and their biomass in the Yangambi Biosphere Reserve.

MATERIALS AND METHODS
Study site: This study was conducted from June to July, 2018 in the Yangambi Biosphere Reserve,
Yangambi, Democratic Republic of Congo. The history, climate, floristique composition of this reserve have
widely been discussed by Jean de15. The study site is shown in Fig. 1.

Vegetation: The vegetation of the Yangambi Biosphere Reserve is part of the Guineo-Congolese Regional
Center of Endemism. Its assessment has shown that there is a diversity of plant formations that can be
explained both by the physical environment (the presence of several rivers in particular) and by the
influence of man who has altered the habitats at different times. The vegetation of the Yangambi
Biosphere Reserve is composed of undisturbed forests, secondary forests, mosaic forests, swamp forests
and forest plantations15. Despite the anthropogenic pressure exerted on this Biosphere Reserve during the
last years of war, almost ninety percent of it is now managed in a sustainable way by the National Institute
for Agricultural Research (INERA), the owner of the site. There are about 737 ha of forest plantations, of
which 600 ha are mainly composed of rubber cultivation and 137 ha are composed of different forest
species imported from all the other provinces of the country. Several planting methods have been tested
(layon method,  Marineau  method,  dense  placeau  enrichment  method  and  the  white  stock  method).
The oldest plantation dates from 193716.
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Fig. 1: Geographic location of the study area

Methodological approach of the study: A 90×90 m grid was installed in Lusambila mixed forest
(Yangambi), then the coordinates of  each  selected  tree  species  were  recorded  with  a  Geo-Explorer
7.0 Global Positioning System (GPS) and it’s the Diameter at Breast Height (DBH) measured. Tree’s name
and family were also recorded. Additionally, soil samples were also collected at each tree location with a
Koppechy cylinder at 10 cm depth and CO2 emissions measured using  a  Vernier  CO2  gas  sensor
(Vernier, Beaverton, Oregon, United States of America) inserted in a 20 cm height and 15 cm diameter
chamber (data not included). The sensor was hooked to LabQuest 2 (version 2.8.4), a standalone data
logger with built-in graphing and analysis software 2 (version 2.8.4). The LabQuest 2 data logger was in
turn connected to a laptop with  Logger  Pro  3  software.  Soil  temperature  and  moisture  were
measured using sensors connected to the data logger and the laptop (data omitted). Trees biomass was
estimated with an allometric equation which relates the biomass of individual trees to easily obtainable
non-destructive measurements, such as Diameter at Breast Height (DBH). The following allometric
equation for the moist forest was used:

Y = 21.297-6.953(D)+0.740(D2)17

where, Y is biomass in kg/tree, D is DBH in cm and H is height in m.

Data on tree species and biomass were recorded in an Excel file and transferred into ArcGIS 10.3 where
interpolated maps were produced using ARCGIS Geostatistical Analyst Extension. The distribution of tree
species was predicted using seven geostatistical models: Inverse distance weighing, ordinary, simple and
universal kriging, global and local polynomial interpolation and finally the Kernel interpolation methods.

A brief overview of spatial interpolation methods: Spatial interpolation is technique with the capability
of producing prediction surfaces and also providing measures  of  the  accuracy  of  these  predictions.
They are based on statistical models that include autocorrelation (statistical relationships among the
measured points). They are used for data analysis in areas such as geography, atmospheric sciences,
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petroleum and mining exploration, environmental analysis, precision agriculture, fish and wildlife studies
and many more. The ArcGIS software has an extension called ArcGIS-Geostatistical analyst containing
these models. In this study, we tested 7 interpolation methods, namely: Local polynomial interpolation
(LPI), Global polynomial interpolation (GPI), Inverse distance weighted (IDW), Simple (SK), Ordinary (OK)
and Universal (UK) kriging and Kernel interpolation  (KI).  Local  polynomial  interpolation  (LPI)  method
it is a deterministic interpolation method that adapts to many polynomials, each in specified overlapping
neighborhoods. A first-order global polynomial fits a single plane through the data, a global second-order
polynomial fits a surface with curvature, allowing surfaces to represent valleys, a global third-order
polynomial allows two turns and so on. The local polynomial interpolation as well as other methods used
in this study were extensively discussed by Kumar17.

RESULTS
Floristic composition and specific dominance: The floristic composition of plant  species  is  given  in
Fig. 2. It shows that a total of 60 individual trees, divided into 25 species and 35 families were selected
(Table 1). The figure also shows that the species Scorodophloeus zenkeri was the most dominant with 31%,
followed by Strombosia pustulata (12%) and Microdesmis yafungana (8%). Cynometra hankei, Petersianthus
macrocarpus and Trichilia lanata each share a specific dominance of 5%.

Forest  biomass:  The  mean  for  tree  biomass  was  2866.70  kg  with  a  median  value  of  2597.20  kg.
These 2 values are in the same range, meaning that biomass data approached normality. This wasis
confirmed by lower skewness (0.9501) and kurtosis (0.5031) values. However, the coefficient of variation
was 72.98% with a standard deviation of 2092.30, suggesting that forest biomass was highly variable
across Yangambi Biosphere as expected.

Fig. 2: Repartition of plant species as function of their dominance
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Table 1: Trees species growth parameters
Mean values

-----------------------------------------------------------
Species Trees # Families BA (m2) DBH (cm) BMS (kg)
Ongokea gore 1 Malvaceae 0.5808 85.99 8,125.20
Hannoa klaineana 2 Simaroubaceae 0.1017 35.99 1,190.50
Autranella congolensis 3 Sapotaceae 0.3614 67.83 4,889.50
Celtis mildibraedii 4 Cannabaceae 0.6246 89.17 8,777.20
Klainedoxa gabonensis 5 Irvingiaceae 0.1687 46.34 3,241.30
Celtis tessmannii 5 Cannabaceae 0.2876 60.51 3,815.60
Polyalthia suaveolens 7 Annonaceae 0.2065 51.27 2,651.60
Cynometra hankei Harms 8 Fabaceae 0.2302 54.14 3,191.70
Cynometra hankei 8 Fabaceae 0.1167 38.54 1,393.70
Diospyros crassiflora 10 Ebenaceae 0.2876 60.51 3,815.60
Cannabaceae 11 Cannabaceae 0.0147 13.69 100.30
Guarea thompsonii 12 Meliaceae 0.2697 58.60 3,557.40
Irvingia grandifolia 13 Irvingiaceae 0.2040 50.96 2,615.30
Microdesmis yafungana 14 Pandaceae 0.1053 36.62 1,485.10
Pancovia harmisiana 15 Sapindaceae 0.0460 24.20 460.50
Petersianthus macrocarpus 16 Lecythidaceae 0.1409 42.36 1,728.80
Petersianthus macrocarpus 17 Lecythidaceae 0.3962 71.02 5,676.20
Piptadeniastrum africanum 18 Fabaceae 0.1147 38.22 1,367.50
Prioria oxyphylla 19 Fabaceae 0.1675 46.18 2,100.10
Scorodophloeus zenkeri 20 Fabaceae 0.2242 53.42 3,039.70
Strombosia pustulata 21 Olacaceae 0.1106 37.53 1,585.90
Strombosiopsis tetrandra 22 Strombosiaceae 0.4589 76.43 6,320.10
Trichilia prieuriana 23 Meliaceae 0.1801 47.88 2,389.00
Trichilia welwitschii 24 Meliaceae 0.0645 28.66 696.20
Tridesmostemon claessensii 25 Sapotaceae 0.3513 66.88 4,741.90
Tridesmostemon claessensii 26 Sapotaceae 0.2275 53.82 2,951.60
Turraeanthus africanus 27 Meliaceae 0.0287 19.11 251.60
Uapaca guineensis 28 Phyllanthaceae 0.0231 73.57 5,822.80
BA: Basal area, BDH: Diameter at breast height and BMS: Biomass

Predictive maps of the potential distribution of plant species: The predictive maps showing the spatial
distribution of tree species are given in Fig. 3a-f for the different geostatistical models. These species
distribution maps have several applications and the most common include estimating the ecological niche
of species. An ecological niche can be described as an area within which a species can survive and
reproduce depending on environmental factors which can be indirect or direct. These factors can influence
the spatial distribution of species at three levels: (i) Limiting factors, which control the ecophysiology of
the species (ii) Disturbances (natural or artificial, for example anthropogenic pressures) and (iii) Resources
(food, water).

Inverse distance weighted method: The spatial distribution of tree species as predicted by the Inverse
Distance Weighted (IDW) method is shown in Fig. 3a. The inverse distance weighted method predicted
a high probability of the presence of Scorodophloeus zenkeri, Strombosia pustulata and Prioria oxyphylla
in the Northwest. In the North-East and South-West, it shows an obvious under-representation of these
three species. Furthermore, the map clearly shows a wider potential distribution of Microdesmis yafungana,
Guarea thompsonii and Irvingia grandifolia in the Northeast, Petersianthus macrocarpus and Pancovia
harmisiana in the Southeast Region.

Global polynomial interpolation method: The spatial distribution of tree species as predicted by the
Global Polynomial Interpolation (GPI) method is shown in Fig. 3b. Overall, Fig. 4 shows a columnar
clustered distribution of obliquely oriented species. The GPI predicted a high probability of the potential
presence   of   species   such   as   Pancovia   harmisiana,   Prioria   oxyphylla,   Petersianthus   macrocarpus
and Piptadeniastrum  africanum  in  the  center  and  a  low  probability  of  the  presence  of  the   species
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Fig. 3(a-f): Maps predicting the spatial distribution of trees species using geospatial models

Scorodophloeus zenkeri, Strombosia pustulata, Strombosiopsis tetrandra and Trichilia lanata in the
Northwest. The presence of species Celtis tessmanii, Klainedoxa gabonensis, Polyalthia suaveolens and
Cynometra hankei is portrayed in Southeast of the map.

Local  polynomial  interpolation  method:  The  spatial  distribution  of  tree  species  as  predicted  by
the Local Polynomial Interpolation (LPI) method is showen in Fig.  3c. Along with the observation made
in Fig.  3b, the map of the distribution of species by LPI predicts in the same  way:  A  clustered distribution
in a column of obliquely oriented species. The LPI  predicts   a   high   probability  of  the  potential 
presence of species such  as  Pancovia  harmisiana,   Prioria   oxyphylla,   Petersianthus   macrocarpus   and
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Fig. 4(a-f): Maps predicting the spatial distribution of trees biomass using geospatial models

Piptadeniastrum africanum in the center and Celtis tessmannii, Klainedoxa gabonensis, Polyalthia
suaveolens and Cynometra hankei at the Southeastern end. On the other hand, it predicts a medium and
low probability of the presence of the species Scorodophloeus zenkeri, Strombosia pustulata,
Strombosiopsis tetrandra and Trichilia lanata at the Northwestern end.

Ordinary kriging method: The spatial distribution of tree species as predicted by the Ordinary Kriging
(OK) method is illustrated in Fig. 3d. The analysis of Fig. 3d showed that the potential distribution map of
species by the OK method predicts a high probability of the presence of Scorodophloeus zenkeri,
Strombosia pustulata and Prioria oxyphylla in the North-West and a small probability of the presence of
Cynometra hankei, Diospyros crassiflora  and  Celtis  mildbraedii  in  the  extreme  North-East.  In  the
North-West  and  South-East,  it  shows  an  obvious  representation  of  the  distribution  area  of
Pancovia harmisiana, Petersianthus macrocarpus and Piptadeniastrum africanum. Furthermore, the method
predicts a clearly wider potential distribution of Microdesmis yafungana, Guarea thompsonii and Irvingia
grandifolia and probably Pancovia harmisiana in the center of the area.
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Simple kriging method: The simple kriging (SK) method predicted a map with a very high probability
of the presence of Scorodophloeus zenkeri, Prioria oxyphylla and Strombosia pustulata. In addition, the
northeastern, southern and central part of the prediction map was occupied by Pancovia harmisiana,
Petersianthus macrocarpus  and  Piptadeniastrum africanum. Furthermore, it should be emphasized that
the SK method did not predict the rest of the species present in the study area.

Universal kriging method: The spatial distribution of 3 species by the Universal Kriging (UK) method is
illustrated in Fig. 3e. A quick analysis of Fig. 3e showed that the potential species distribution map made
by UK is similar to the one for Ordinary Kriging (OK), in Fig. 3d. As previously observed, this map predicted
a high probability of  the  presence  of  Scorodophloeus  zenkeri,  Strombosia  pustulata  and Prioria
oxyphylla in the Northwest and a small probability  of  the  presence  of  Cynometra  hankei, Diospyros
crassiflora and Cannabaceae in the far North-East. In addition, the probability of the presence of
Scorodophloeus zenkeri, Strombosia pustulata and Prioria oxyphylla is much lower in the South-East, or
even zero in the North-East. In the North-West and South-East, it shows an obvious representation of the
distribution area of Pancovia harmisiana, Petersianthus macrocarpus and Piptadeniastrum africanum.
Furthermore, the method predicts a clearly larger potential distribution of Microdesmis yafungana, Guarea
thompsonii and Irvingia grandifolia and probably Pancovia harmisiana in the center of the area.

Kernel interpolation method: Results of the spatial distribution of tree species as predicted by the Kernel
Interpolation  (KI)  method  are  shown  in  Fig.  3f. Analysis of this potential species distribution map
shows high probability areas of the presence of Scorodophloeus zenkeri and Strombosia pustulata in the
North-West, medium probability in the South-East and no probability of presence of these species in the
North-East, in the center and in the South-West part, which would potentially be occupied by Pancovia
harmisiana, Petersianthus macrocarpus and Piptadeniastrum africanum. Furthermore, the map predicts a
potential spatial distribution of species like Ongokea gore, Hannoa klaineana, Autranella congolensis,
Cannabaceae, Klainedoxa gabonensis, Celtis tessmannii, Polyalthia suaveolens,  Cynometra  hankei,
Diospyros crassiflora, Cannabaceae, Guarea thompsonii, Irvingia grandifolia, Microdesmis yafungana and
Pancovia harmisiana with high probability, exclusively in the eastern part and low probability towards in
the South. Finally, the species distribution prediction map by the Kernel interpolation method shows a
potential spatial distribution of Strombosiopsis tetrandra, Trichilia lanata, Trichilia welwitschii,
Tridesmostemon   claessensii,   Turraeanthus   africanus   and   Uapaca   guineensis   in    the    North-West
and South-East.

Predictive maps of potential distribution of trees biomass: The predictive maps showing the spatial
distribution of trees biomass are given in Fig. 4(a-f) for the different geostatistical models. There were no
instances where maps showing the spatial distribution of tree species matched those of trees biomass.
Overall, the maps showed 2 zones, one with low biomass in the west side of the forest and high biomass
in the east side, this regardless of the geostatistical model concerned. The inverse distance weighing (IDW)
ordinary kriging (OK) and even universal kriging (UK) all depicted Ongokea gore,  Celtis  mildbraedii,
Uapaca guineensis, Petersianthus macrocarpus, Autranella congolensis and Scorodophloeus zenkeri which
in fact agreed with Table1. These were the species with the highest biomass. The local polynomial method
(LPI),   global   polynomial   (GPI   and   kernel  smoothing  method  (SK)  depicted  Ongokea  gore,
Polyalthia suaveolens, Microdesmis yafungana, Pancovia harmisiana and Scorodophloeus zenkeri as species
which highest biomass, but some of these species were placed in the South west and middle of the forest
plot instead of the East of the plot as other geostatistical methods have showed.

DISCUSSION
Comparison between spatial interpolation methods for predicted tree species maps. The evaluation of
these different spatial interpolation methods tested in this study is generally good, with the exception  

https://doi.org/10.17311/tas.2023.221.231  |                 Page 228



Trends Agric. Sci., 2 (3): 221-231, 2023

of the Global Polynomial Interpolation and the Local Polynomial Interpolation  methods  for  which  the
2 species prediction maps were almost identical Fig. 3(b-c). These two methods predicted a clustered
columnar distribution of oblique oriented species, with a tendency to minimize the probability of the
presence of dominant species such as  Scorodophloeus  zenkeri  and  Strombosiopsis  tetrandra  (Fig.  2).
On the other hand, they also tend to predict these species only towards the North-East. It has been
reported that when some species are more or less sampled than others, the prediction model may be
influenced by the most common species or less represented one19. The comparison of potential species
distribution maps from geostatistical methods showed that prediction maps produced by the Ordinary
Kriging and the Universal Kriging methods were both similar. This similarity shows that they are both
based on same statistical processes including autocorrelation, i.e. the statistical relationships between the
measured points. The maps of favorable zones (of potential distribution) estimated by these models
tended to be the most often optimistic18. For the rest, these methods seem to predict more or less
correctly the zones of presence in the North-West of the area, a little less in the center and the  East.  The 
verification  map (not included) of the spatial distribution of species therefore seems consistent with the
prediction map of the distribution of species by the Simple Kriging method, more particularly for the
species Scorodophloeus zenkeri in almost all geographical directions. This trend confirms the
biogeographical history and environmental preferences of this species in these areas. In agreement with
the other methods, the prediction maps of the distribution of species by the Kernel Interpolation method
and that of Inverse Distance Weighting also seemed to corroborate with the reality of the verification map
which shows a predominance  of  species  such  as  Scorodophloeus  zenkeri  and  Strombosiopsis tetrandra 
towards  the North-West and towards the South and Cynometra hankei towards the East. In addition,
among all of the methods tested, the Inverse Distance Weighting method gave rise to predictions
centered around measured trees Fig. 3(a-f), while other methods in particular the simple, Universal and
Ordinary Kriging methods, the Local and Global Polynomial Interpolation method have shown a tendency
to predict areas of potential presence for larger species Fig. 3(b-f). The reasons for these differences can
be attributed on the one hand to the profile of the presence of data, on the other hand to the distinct
ecological characteristics of the species20. The number and size of the grid can also have an impact on the
methods and their predictive capacity12. An intermediate number of presence cells, distributed in a
homogeneous manner and fully included in a restricted distribution area leads to a good prediction of
the geographical distribution of species. On the contrary, for an intermediate or large sample, with places
of higher prevalence and wide geographical distribution, the models tend to make conservative or
erroneous predictions, contrary to a small sample and an intermediate distribution area, allowed to obtain
a good prediction of the potential distribution area. Furthermore, as said earlier, several studies have
shown that different prediction methods can lead to different results21 because these methods are
sensitive  to  the  available  data  and  the  mathematical  functions  used14.  Forest  biomass  showed  an
East-West distribution with trees with the highest biomass on the eastern portion of the forest. This may
be due to environmental factors influencing forest growth. It is recommending that the study be repeated
for a larger area (at least 150×150 m). The number of trees to be measured should be increased, for
example doubled, but the spatial interpolation methods can be limited to three: Inverse distance weighing,
Ordinary kriging and Universal kriging if variograms can be fitted.

CONCLUSION
The present study aimed to determine the most appropriate and efficient methods for the prediction of
the geographical distribution of tree species  and  their  biomass  in  the  Yangambi  Biosphere  Reserve.
To achieve this, a systematic inventory of the selected species was carried out using Global Positioning
System (GPS) and tree parameters measurements. From these data, the prediction maps were made with
seven spatial interpolation methods. Although, these models are promising, it would be desirable that this
study be repeated over time and in several places to determine the best models to be used in our
region/country for a better understanding of the spatial distribution of forest tree species and their
biomass.
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SIGNIFICANCE STATEMENT
Knowledge of tree species distribution and their biomass estimates is critical for monitoring forest carbon
storage and for strategic forest management. Unfortunately, measuring tree parameters to obtain such
information can be a time-consuming process that may require a great deal of manpower. Therefore,
randomly taking a few measurements of tree parameters to calculate the biomass and predicting the rest
of these parameters can help to quickly identify forest areas of interest in terms of tree biomass
management. Therefore, this study provides an opportunity to quickly obtain the needed information to
improve forest management operations.
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